UNDER THE SINK

Holy Triage,
Batman!

Code triage: it’s a dirty job, but somebody’s got to
do it—quickly, well and often on very little notice.

SUSAN SONS

O

PREVIOUS

Shawn Powers’ NEXT c
The Open-Source New Products

Classroom

ALMOST ONCE PER WEEK, SOMEONE COMES TO
ME ASKING FOR A CODE AUDIT. Almost invariably,
these people have no idea what they are asking for. In
99% of cases, what they really need is code triage, or
perhaps a more in-depth review, not an audit.

A real code audit means auditing to a standard,
a process in which code is checked to see that it
complies fully with a specific, objective coding
standard. It can be done, but it's resource-intensive
for all but the most trivial of cases. Unless the
standard is unusually well suited to ensuring
something very much needed by the code’s use case,
this type of audit is usually more socially useful than
it is technologically useful.

More commonly, what people requesting a code
audit mean is make me a one-page list of every way in
which this software deviates from the ideal. There are

70 | November 2016 | http://www.linuxjournal.com

Susan Sons serves as a
Senior Systems Analyst
at Indiana University's
Center for Applied
Cybersecurity Research
(http://cacr.iu.edu),
where she divides her
time between helping
NSF-funded science and
infrastructure projects
improve their security,
helping secure a
DHS-funded static
analysis project, and
various attempts to
save the world from
poor information
security practices in
general. Susan also
volunteers as Director
of the Internet Civil
Engineering Institute
(http://icei.org), a
nonprofit dedicated

to supporting and
securing the common
software infrastructure
on which we all depend.
In her free time, she
raises an amazing
mini-hacker, writes,
codes, researches,
practices martial arts,
lifts heavy things

and volunteers as a
search-and-rescue and
disaster relief worker.

UNDER THE SINK

a number of things wrong with this:

1. You probably can’t provide a specific and extensive enough definition
of correct behavior for your software, taking into account all possible
inputs, environments and eventualities, to provide a standard to
evaluate its total correctness. To audit is to compare code to an
objective standard, without such a standard, audit is impossible.

2. | cannot find every problem in your code while you are still developing
it, and you probably aren’t willing to undergo a one- to two-year code
freeze while your code is analyzed.

3. You probably aren’t willing to pay for one to four man-years of
senior software security engineer time to come close to finding every
potential problem with your code, which is typical for a medium-
complexity project with mediocre code quality and a few hundred kloc.

| do sometimes say yes to code reviews, and | often find myself doing
code triage. What's the difference?

Code review is systematic examination of computer source code
intended to find mistakes overlooked in the initial development phase,
improving the overall quality of software.

Code triage is a specific form of code review intended to
identify the most critical targets for immediate improvement without
a deep inspection. In other words, code triage answers the question,
“Given limited time and resources, how do | address this code’s
worst deficiencies?”

The Role of Triage

One of the scariest moments in a developer’s life—especially someone
who works with infrastructure software or anything security-critical—

is taking over someone else’s mess. Even someone else’s good code—

in enough volume, on tight enough deadlines, with little enough
documentation, tooling and familiarity—can seem like a mess. Code
triage is the method for making sense of the mess, instead of saying “|
can’t touch this until I've had 12 solid man-months to spelunk its depths.’

7

71 | November 2016 | http://www.linuxjournal.com

UNDER THE SINK

Let's assume you don’t have 12 man-months.

Let's pretend you just discovered that a critical piece of infrastructure
software has gone unmaintained, or badly mismanaged, for about a
decade. You don't know how bad it is, but you suspect it is terrible.

It's the kind of software that, if it breaks just so, people will die, or the
world economy will be in ruins—whatever. This has somehow (through
assignment or your unrelenting sense of duty) become your problem.

This may or may not have happened to me before. | can promise you,
there’s a way to win through, and once you’ve become practiced at it,
having a few hundred-thousand lines of broken mystery code fall in your
lap will become significantly less daunting. Note that | didn’t say “sane”
or “easy”—just “less daunting”. There is method to the madness.

The People Phase

Never start with the code if you can help it. The code will tell you what
someone programmed, but it never will tell you what someone intended
to program or, for that matter, what they shoul/d have intended to
program. | begin code triage on complex projects (anything that seems
to deserve more than a half-day of my time) with a fountain pen and a
notebook. Vary the tools if you must, but the process is important.

Keep excellent notes. Remember that triage is a process of gathering
information to use in a decision-making process. If information is lost
before it can be used, you've failed. Triage is often undertaken as a one-
person activity, but it may be done by a small team if the team is tightly
knit and well coordinated enough. If working with a team, notes must
be kept in such a way that team members can collaborate in as close to
real time as possible, and that the notes are clear to all of the team at all
times. Getting to that point with a team is difficult but possible.

Your complete notes should be close at hand at all times during the
triage process. Often, information you come across in one part of the
process will conflict with, or relate to, something that came up earlier.
These relationships are typically the most important discoveries and may
escape notice if notes are disjointed or compiled only after the fact. Keep
it together! Review the entire body of notes often.

Use varied sources. You will want to contact as many different
stakeholders as possible, including at least one sample from any distinct

72 | November 2016 | http://www.linuxjournal.com

UNDER THE SINK

group of stakeholders you can identify. For example, when triaging

the NTP reference implementation, | spoke to the project’s maintainer,

to the project’s funding coordinator, to community members who

had contributed code or tried and failed to contribute code, to past
contributors who had left the project, to a package maintainer who
packaged the software for a major Linux distribution, and to end users in
different sectors where the software was employed: commodity computer
usage, data center, core internet routing, scientific applications and
finance sector. | did not have the opportunity to talk to the software’s
original author, but | made an effort to get to know a bit about him
through his writing.

Listen mindfully. When interviewing people as part of software triage,
expect to get different perspectives from different people. Don't try to get
consensus; it's not important at this stage. You are gathering information
and not much else. What problems have others identified already? What
barriers have others found when they have tried to make improvements?
What frustrates people? What changes are people afraid of? What
functionality do they depend on?

| tend to ask users most about their use cases. | ask developers most
about developer experience, the purpose of the software, and so on. And,
| ask everyone about the things they would like to change and not like to
change. However, the most important thing that | look for is something
that, by nature, | cannot ask:

What assumptions do | hear when people talk about the software?
Unspoken assumptions can be dangerous, and until I've gone through
the documentation in detail, | do not know which assumptions are or are

not explicitly documented. So, | assume all assumptions have been left

73 | November 2016 | http://www.linuxjournal.com

UNDER THE SINK

unspoken until proven otherwise. Document assumptions regardless of
their correctness. Spotting them takes practice.

“What time would you like to go to dinner?” assumes that you would
like to go to dinner, and that you have an opinion about what time you
would like to go.

“| set my pencil on the desk a moment ago; if it isn’t still there, it
must have rolled off” assumes that no one has picked up the pencil,
that the pencil isn’t capable of walking or flying, that the pencil is
capable of rolling, that pencils don’t evaporate, and that nothing on
your desk ate the pencil.

Try This Exercise: Someone says, “This program tells you how many
files are in your home directory.” What are some questions you could
ask about such a simple program to root out unspoken assumptions
about the program’s expected behavior? See the sidebar at the end of
this article for a list of possible questions.

Put others at ease. This is the most difficult part, especially for many
software engineers for whom interviewing is not part of their core skill
set. If you are new at this or unsure of yourself, start with the consumers
of the software: they are the easiest, because you often can deflect from
issues of the software itself by focusing on their workflow and use case,
and they usually don’t see themselves as responsible for the current state
of the software. If they aren’t very technical, get the workflow and use-
case information from them directly, then see if one of the consumers can
get you in touch with someone in their IT department who supports the
software for them: that's an important stakeholder too, with potentially
crucial information on factors such as operating environment.

| tend to start with the current or former developer(s) of a project
I'm trying to triage. Regardless of whether I'm triaging in order to
take over or triaging in order to assist the standing team, these will
be the most delicate interviews. They also are potentially the most
fruitful. Who better knows the assumptions with which the code has
been developed so far than the people developing it? Who knows how
it got to where it is today? Who knows what users or potential users,
contributors or potential contributors ask the development team the
most? Who knows where the tooling is falling down or a struggle to
work with? Who has the most ego involved with the current state of

74 | November 2016 | http://www.linuxjournal.com

UNDER THE SINK

the software? Yep. Be prepared to tread lightly.

First and foremost: do not take an adversarial mindset into any
interview, no matter how badly you think anyone may have done his or
her job. It will come through in your speech and behavior, and it will make
people shut down on you in self defense. Your job is to fix the software,
and you will be most effective at that if you can find some empathy for
the people with whom you are speaking. This is another reason | start
with the people before the code. | want to approach those people with
empathy and understanding, but I'm still a cynical, grumpy engineer—at
least on the days when I've been slogging through 200,000 lines of code
trying to find the race condition that ate Manhattan. Don’t meet people
the day you wrestled with their bad code.

| keep interviews about software triage as informal as possible.
Formality causes most people to expect an adversarial experience, which
is exactly what | do not want to provide. | want to make people feel
comfortable. Usually, this means dropping a short, informal email to
set up a time convenient to them and then doing a face-to-face meeting
(if possible) over tea or coffee, or a chat by phone or video conference.
If face to face, make the effort to incorporate snacks/beverages: eating
and drinking is a natural signal to the body that we are not in combat,
and it may have a calming effect.

Bad code is bad for a reason. Let the developers tell their side of the
story. Sometimes it's self-inflicted, sometimes it's not. You can judge
later. Your job during the interview is to be empathetic and let them
talk. Nobody gets up in the morning and decides to write terrible
code just for fun. It tends to result from developers working in a toxic
environment, or being in over their heads, or lacking resources, or
being burnt out or some horrible dysfunction—something went wrong.
Chances are, the developers can’t or won't identify this and tell you
directly, but if you get them talking about the software long enough,
let them ramble a bit, and ask pointed questions here and there in an
empathetic manner, you will get it eventually. What is most important
will vary a great deal from case to case, so this stage takes patience;
follow threads and see where they go.

Assume that people do not want their comments and reflections
attributed to them unless they have specifically given you permission to

75 | November 2016 | http://www.linuxjournal.com

UNDER THE SINK

quote them. Fears of causing drama or feeding a rumor mill will cause
people to self-censor.

In one case, | found that the most relevant tale was when the software
lost a major funding source and the team ended up adding features that
didn't fit their vision for the project in order to keep funding flowing
from other sources, rather than let the software die. This was very helpful
information, because it told me | needed to understand the project’s
current funding strategies when | made triage recommendations.

In another, the project lead retired and hadn’t planned well enough
for the project’s longevity. Not having another plan, he handed
the software off to his former assistant who wasn’t ready for the
responsibility. Years of being in over his head made the assistant a
paranoid and dysfunctional project lead who chased off developers and
drove the software into crisis. | burned a great deal of time and energy
trying to get this project lead to cooperate with saving his software
and never did succeed. | don't regret trying. Over many long, late-night
phone calls, | got an inside view of how he’d struggled to balance the
interests of those he saw as his most important stakeholders. Most of
his views on managing the code were off enough not to be very helpful,
but coming to understand how he’'d gone about interacting with people
made a big difference, even when he hadn’t been interacting effectively.

In yet another case, the software had been written by company A to
manage a specific hardware platform purchased by several companies,
including B. B became so dependent on the software that when A
stopped maintaining the software, B made a deal to buy it. B, however,
wasn’t a software development firm and had no in-house resources for
software development, so it hired a series of contractors for one-off
improvements or feature-adds to the software. After eight years and
more than 20 contractors, the software was a security and reliability
nightmare with no design integrity whatsoever, no documentation and
a brittle build system. When | got to the code, | was prepared to deal
with the huge variation in coding styles | found and the lack of design
integrity. | also was able to get in touch with someone in the accounting
department who could help me reconstruct which contractors | would
want to speak with based on dates of various code changes, and |
actually was able reach some of them.

76 | November 2016 | http://www.linuxjournal.com

UNDER THE SINK

Don’t be afraid to go back. Often, after talking to more people or
during a later stage of the triage process, you will trip on something
that leaves you wanting to speak with someone you've already spoken
to. | end all interviews by asking permission to contact the people again
should such a need arise and ask how they prefer to be contacted so
that | may be as respectful of their time as possible.

The Proxy Phase

Before | jump headlong into a big code base, but after I've spoken to
whatever relevant people | can reach, I still have work to do around the
code. | spend some time looking for things that can give me red flags of
likely problems, or signs that certain other things may be well handled,
or tools that may exist to make my work with the code easier. | call this
the proxy stage because many of the things | look at aren’t actually
direct evidence of what’s broken; they're just strongly correlated enough
to be useful in a quick triage.

The proxy stage will direct the effort you put in for the rest of your triage
process. It's triage for triage. When you find out that the software cannot
be built without the one machine in a former developer’s apartment that no
one has root on, which has a black-box script no one knows the contents
of, the build system becomes a priority far higher than the contents of the
code base. Reliable, reproducible builds are necessary to the development
process, and little improvement to the code can happen without them.

On the other hand, discovering that the source control, build system
and so on are in good shape tells you that spending time digging through
SCM logs probably will give you useful information, because someone
took the time to use those tools properly.

Begin with documentation. Hopefully you already know how useful
good documentation can be; however, don’t discount the potential

77 | November 2016 | http://www.linuxjournal.com

UNDER THE SINK

treasures to be found in bad documentation:

B Who authored what parts of the documentation can tell you about
who cares about what components, other than the developers.

B Relative ages of different parts of the documentation can give you
an idea of the relative neglect of different parts of the code, in the

absence of revision control or other, better data.

B Insight into the mental models that developers were operating on while
writing code.

Spelunk issue queue contents (current and historical).

Find out how issues have been handled in the past; this will tell you a
lot about the development team’s workflow.

Find out what big issues have been churned on for a long time but
not solved.

Find out what security issues have cropped up in the past and how they
were dealt with.

Find out how active the community/team is in general.

Look at tests.

Are there tests?

What is the coverage like?

What is the overall sophistication like? For example, is it a unit-test-only
setup, a functional-test-only setup, or are both in use? Has this project

begun using fuzz testing? Is there scaffolding for mocked interfaces?

Do all tests currently run and pass?

78 | November 2016 | http://www.linuxjournal.com

UNDER THE SINK

B Can you tell anything about the testing strategies in use? Were tests
committed with every patch? Was adversarial testing employed? Was
only one person writing tests? Was anyone a testing specialist?
Examine tooling (build system, Cl infrastructure, source control setup

and so on).

B How much automation is/was in place?

B How reliable is the automation? How much is still available/usable?

B Is a modern SCM (git or Mercurial) in use?

B Do the tools seem to be reducing the dev team’s overhead or increasing
it? (That is, is it doing its job, which is making developers’ lives easier
and their work better?)

Use commit messages, tags and branch structure within the SCM.

B Are commit messages, tags and branching used effectively—that is, can
you follow them?

B What can you learn from reading the commit messages?

Look at general style and code quality.

B Don't get sucked into a deep read of the code yet, skim only.

B How is the overall comment density? Are the comments literate?

B Does the indentation, overall structure and so on suggest the absence
or presence of a style guide?

B Does this feel “clean” or “messy” in general?

B Is semantic versioning used?

79 | November 2016 | http://www.linuxjournal.com

UNDER THE SINK

B How many red flag comments do you see in a quick skim? Look for
things that indicate cut-and-paste coding—for example, “got this
from <url>" or anything mentioning Stack Overflow. Also, look for
“WTF", "IDK why, but if | remove this, it breaks”, and things like
that. These are areas you may want to look at in the code stage if
you have time.

The Code Phase

You may have run out of time for triage by now, or you may have
found so many problems that triage is done. | have had projects like
that. When | stepped into NTP, the code wasn’t C99-compliant, the
build system was unusable, the code was locked up in an inaccessible
and antiquated SCM, and the documentation was mostly more than
seven years out of date—all of those issues took precedence over
specific code improvements, because fixing them was a prerequisite to
enabling developers to fix the code. We needed to be able to onboard
new developers by giving them access to code they could actually build
and documentation on how it all worked.

Do not try to read, let alone understand, all or most of the
code. Your job is not to find every problem—90% of problems are
irrelevant to your search, unless the code is shockingly well written.
Remember, you are doing triage: you are a field medic, you are not
performing an autopsy. You are figuring out how to do the most to
improve the life of the patient in limited time with limited resources:
where do | get the most bang for my buck right now, and what do |
look at next once that is done? Nothing more. Your proxy stage, above,
will give you a clue about how much of the code stage to bother with.
In most cases, you will skip some or most of it.

You will get your biggest gains by improving development process
(because then fixing code becomes faster/easier, and all development
after that point gives greater returns), by fixing extremely high-impact
vulnerabilities and by making changes that remove entire classes of
vulnerabilities (rather than trying to squash them one at a time). To
that end, see below.

Evaluate program architecture. Think about the code’s overall
architecture. Are you having trouble navigating it? How good or bad is

80 | November 2016 | http://www.linuxjournal.com

UNDER THE SINK

the separation of concerns? How well is minimization being practiced?
Don’t spend too much time trying to learn it all, just skim for major red
flags—for example, crypto algorithms housed in the same place as web
interface code or piles of theoretically unreachable code.

Eliminating code eliminates attack surface, eliminating entire classes
of vulnerabilities. It also reduces complexity, reducing opportunities for
developer mistakes. If you can safely remove code, do so.

Refactoring to make code more navigable and more logically
compartmentalized makes it easier for developers to understand,
makes bug fixing easier, reduces the rate of defects introduced by
developer error and increases the speed at which developers can
introduce high-quality, atomic patches. It isn’t always highest priority
in a disastrous code base though, as brittle code bases are difficult and
time-consuming to refactor. Other changes likely will take priority if
the code resembles spaghetti.

Catalog interfaces. Find and list all of the software’s internal and
external interfaces—or all of the ones you can find. Try to figure out
which ones are well defined and controlled, and which aren’t, and
figure out which are used and necessary, and which aren't.

Catalog data stores and data sources. Most software deals
with data at some point. Look at where external data comes from,
what assumptions are made and how the software copes with
nonconforming (accidentally or maliciously) or missing data. Now do it
again for any data the software stores.

Remain mindful of assumptions. As you go through the code,
keep in mind all the assumptions you noted earlier. Note anything in
the code that confirms or conflicts with those assumptions. Note any
new assumptions you find.

Putting It All Together

Don’t go down rabbit holes. A good software engineer will be
tempted, at some point, to dive in to an interesting problem. Six hours
later, your triage will be shot. You do not have time to understand any
one problem fully; you are trying to understand the breadth of the
problems the software has. This is not an exercise in depth. Don’t be
afraid to make generalizations and intuitive leaps, as long as you note

81 | November 2016 | http://www.linuxjournal.com

UNDER THE SINK

them as such and jot down a rough estimate of the time it would take
to investigate fully the issues involved.

Triage is more complicated when you do not understand the problem
space, but that complication largely can be conquered by carefully
compartmentalizing the problem. Be methodical, and don’t get
distracted by the esoteric bits of domain knowledge you don’t have.

If the software is not properly segmented so that very domain-specific
algorithms are separate from interfaces, crypto and so on, that is a
fault in itself. Note it, and move on. If it is well segmented, you should
have no problem checking out the build system, data stores, interfaces
and so on, leaving the domain-specific code segments for deep dives
with a domain expert by your side.

The first thing you will want to do is to use the information you just
gathered to aid in decision-making and communicate that process to
others. Lay out a plan, and describe what led you to choose that plan.
Keep your notes, and ensure that the references to specific code in
those notes will be find-able later, after the code has evolved and/or
been moved to another SCM.

If you can, follow the software through at least the first stages of
its refactor or rejuvenation following the triage you just did. That
experience provides a crucial feedback loop that will enable you to
improve your triage skills much faster than you could without it. You'll
inevitably see things you missed: some that you had no chance of
finding without a deep dive, and some that you'll soon realize were
staring you in the face all along. The more of these experiences you
have, the better you will become at triage.

Practice is the way to improve your code triage skills. Good practice
is frequent and in volume. Long breaks make it hard to build on and
reinforce previous learning. Working with only small code samples
will not teach you the skills needed to find big-picture problems
and trends in a sea that you cannot read line by line. Additionally,
try to work with a variety of code, in terms of language, domain
and quality. If you can, also stretch your assessment muscles in
other domains. I've learned many triage skills in volunteer search-
and-rescue work that transferred to software engineering and
information security.m

82 | November 2016 | http://www.linuxjournal.com

UNDER THE SINK

SOME ANSWERS TO THE “TRY THIS EXERCISE”

B How does it determine the scope of “my home directory”?
B Will it span multiple devices?
B Will it follow symlinks?

B If the same file is symlinked or hardlinked many times, how will it
be counted?

B What if there is a hardlink or symlink in my home directory to
something outside my home directory?

B Is any type of deduplication attempted?

B What if |, for some reason, had filesystem objects in my home
directory that aren’t really files per se, such as broken filesystem
pointers or half of /proc?

B How does the program determine what my home directory is?

B |f $HOME differs from what is listed as my home in /etc/passwd will
that have any effect?

Send comments or feedback via

http://www.linuxjournal.com/contact

or to ljeditor@linuxjournal.com.

RETURN TO CONTENTS

83 | November 2016 | http://www.linuxjournal.com

