
42 | July 2016 | http://www.linuxjournal.com

UNDER THE SINK

Security
Exercises
Read on for a crash course on how to plan
effective security exercises.

REGULAR SECURITY EXERCISES are, bar none,
the most powerful, cost-effective tool for maturing a
project’s information security operations—when done
well. Unfortunately, courses and certifications on
InfoSec tend to focus on how to implement specific
controls or how to select some baseline best practices
when starting from scratch. Little to no attention
tends to be paid on how to test what you have and
iterate on it. Prepare for a crash course.

Security Exercise? What’s That?
A security exercise is a drill designed to propel a team
or teams through the steps they would take in the
case of a real or suspected information security
problem in their organization or project. For example:

 Tell your ops team that the server hosting your

SUSAN SONS

Susan Sons serves as a
Senior Systems Analyst
at Indiana University’s
Center for Applied
Cybersecurity Research
(http://cacr.iu.edu),
where she divides her
time between helping
NSF-funded science and
infrastructure projects
improve their security,
helping secure a
DHS-funded static
analysis project, and
various attempts to
save the world from
poor information
security practices in
general. Susan also
volunteers as Director
of the Internet Civil
Engineering Institute
(http://icei.org), a
nonprofit dedicated
to supporting and
securing the common
software infrastructure
on which we all depend.
In her free time, she
raises an amazing
mini-hacker, writes,
codes, researches,
practices martial arts,
lifts heavy things
and volunteers as a
search-and-rescue and
disaster relief worker.

NEXT
New Products

PREVIOUS
Dave Taylor’s
Work the Shell

LJ267-July2016.indd 42 6/23/16 3:17 PM

UNDER THE SINK

43 | July 2016 | http://www.linuxjournal.com

internal bug tracker has experienced data loss due to a critical RAID
controller failure. Have them rebuild the server from backups on
spare hardware to show that the backups are viable, spare hardware
available and the process known and workable.

 Start running an otherwise innocuous, but memory-intensive, piece of
unauthorized software on a development server. See how long it takes
for someone to notice and what he or she does about it.

Isn’t This Dangerous?
Security exercises are not the first step in running an InfoSec program for a
project of any size. The first step is coming up with a plan or set of policies
appropriate to the size and complexity of the project. For a very small,
all-volunteer open-source project, this may be as simple as “Our project
manager, $name, accepts risk on behalf of the project and our information
security officer, $name, is in charge in the case of a suspected security
incident; the integrity of our code base will be prioritized first, confidentiality
of yet-undisclosed vulnerability information second and availability of services
third.” For a larger, more complex organization with paid staff, this normally
will start with a Master Information Security Policy and Procedures document
supported by a number of other policy documents.

In either case, step one is establishing roles and responsibilities; step
two is establishing operational expectations, and step three is testing that
your policies, procedures and expectations work. If you aren’t testing, you
don’t really know that it works.

Scheduling exercises at a predictable time and reminding others when
it will happen prevents confusion among staff. It is wise to begin with
low-impact exercises (more on this below) that don’t leverage production
systems, and move on to higher-potential-impact exercises only when the
organization’s infrastructure and personnel have had most of the bugs
shaken out. If something as small as a runaway process on a single server
can seriously impact your business, it’s better to find out at a planned
time with all hands on deck than at 4am on a holiday when no one who
knows what to do can be reached. The whole point of security exercises is
to increase resilience: raise the threshold of what is normal for your team
to deal with, what your systems can shrug off.

LJ267-July2016.indd 43 6/23/16 3:17 PM

UNDER THE SINK

44 | July 2016 | http://www.linuxjournal.com

Why Are Security Exercises Important?
When I respond to a security incident that’s gone disproportionately bad—
that is, far worse than the incident should have gone given the resources
and security needs of the organization—it tends to be true that more than
one thing has gone wrong. However, the root cause of how those things
were all allowed to go wrong at once is almost one or both of two things:
lack of interest in and support for information security from organization
leadership, or the failure mode I call “death by supposition”.

“Death by supposition” is when we make decisions based on “facts”
that are supposed to be true, but have not been tested by us. For
example, suppose that hardware or software will behave the way the
vendor said it would. Suppose that anybody in the company remembers
the incident response plan that was written, approved and stuck in a
drawer two years ago. Suppose that the “best practices” written for
companies in your sector don’t overlook some way in which the sector

work the way they were designed to, and nothing has gone awry in the
25 updates since the system was put in place 18 months ago. Suppose

insisted that it would.
Supposition kills, and it’s an insidious killer because, unlike bad

leadership, it’s easy to miss. We often aren’t aware of our assumptions
until something goes horribly wrong—better for that something to be a

Security exercises, done right, will do the following:

 Reveal whether systems and technical controls (still) work as expected.

 Ensure that security, ops, leadership and other team members are on
the same page.

 Reveal holes in procedures and policies.

 Provide your team with vital practice at operations that may someday

recovery and incident response procedures.

LJ267-July2016.indd 44 6/23/16 3:17 PM

UNDER THE SINK

45 | July 2016 | http://www.linuxjournal.com

 Provide your team with stress inoculation. This is something that
SWAT teams, martial artists, search-and-rescue teams, firefighters,
military and so on already know is an essential part of their live
drills: getting used to something so it doesn’t register as such a
large stressor any more.

 Provide non-security personnel and security personnel alike with
valuable hands-on security training.

 Improve the relationships needed to make security improvements and
incident response go more smoothly.

Most important, well-executed security exercises take your organization
from the land of supposition to actually knowing where your weaknesses
are, where your resources should be going, and what you are doing right.
Don’t guess. Know.

What Makes a Good Security Exercise?
Asking what makes a good security exercise a lot like asking what makes a
good martial arts or search-and-rescue exercise. If you exercise only once
or do only one kind of exercise, you won’t get the results you are after. The

program?”
The answer is:

 Regularity.

 Purpose and focus.

 Attention.

 Follow through.

Good Security Exercises Happen Regularly
In a small organization without much in the way of infrastructure, run an

make sure you are doing something regularly.

LJ267-July2016.indd 45 6/23/16 3:17 PM

UNDER THE SINK

46 | July 2016 | http://www.linuxjournal.com

In a medium-sized organization with some dedicated IT resources
and some in-house infrastructure to look after, run an exercise once
per month. This gives you enough time to design the exercise well, do
a thorough postmortem and integrate what you’ve learned into your
security operations.

In a large organization with complex IT infrastructure, security exercises
should be a near-constant affair, carried out within various units and
across units with support from your security team. Consider building out

These are rough guidelines only; use your brain and a little trial and
error to find the right interval for your organization. Don’t be afraid to
run exercises when key people are missing. Often, real incidents happen
at the least convenient time possible: when the security officer is on a
long flight, when a needed systems administrator is out sick and so on.
Get used to the unexpected.

Purpose and Focus Matters
If I listed all the security exercises I could think of, and your organization
drew and ran a random one each month, you’d probably be better off
than if you ran no exercises at all. However, exercises tailored to your
organization and infrastructure are far more effective. Much of an

What Are You Exercising?
Each security exercise may be exercising people, systems, policy and
procedures, or some combination of the above. Note that I said “exercising”
rather than “testing”. Security exercises are most effective when they
are used as a diagnostic and training utility rather than as a performance
evaluation. Using security exercises as a performance metric for personnel

and simulated incidents. In the organizations with the most effective security
programs, exercises pit team members against the exercise, rather than
against one another or against an evaluation mechanism.

In organizations where security exercises are new, they often are
broad—for example, “Can we restore this system from backup?” or
“What do we do if our password database is leaked?” In organizations

LJ267-July2016.indd 46 6/23/16 3:17 PM

UNDER THE SINK

47 | July 2016 | http://www.linuxjournal.com

with more practice, exercises often are a mix of the broad, end-to-end
kind with more targeted exercises that test specific capabilities, such as
detection, ability to bring specific systems up or down smoothly, response
to specific attacks and so on.

I keep a list of things I’d like to test via security exercises for each
project/organization I’m responsible for. The list contains:

 Any issue for which we’ve argued whether the control we have is the
“right” control.

 Any system or component we haven’t tested recently (or at all).

 Any known vulnerability we think we’ve closed.

 Any known vulnerability we haven’t effectively closed and to which I’d
like to draw leadership or team member attention.

 Anything that looks like a single point of failure—including people.

 Any behavior we assume our team members will do, but haven’t
tested recently.

 Procedures for “black swan” events—potentially devastating security
events that also are rare/unlikely enough that we have practice dealing
with them only if we create that practice.

 Procedures that involve roles for which we’ve had personnel turnover.

 Procedures where I’m not sure it’s clear who will be doing what task or job.

Prep
Once you’ve chosen your exercise focus, prepare for it. Unless your
organization is very mature from a security standpoint, this will begin
with setting a schedule and notifying everyone in the organization, then
reminding them again just before the exercise starts.

The simplest security exercises are what we call tabletop exercises.

LJ267-July2016.indd 47 6/23/16 3:17 PM

UNDER THE SINK

48 | July 2016 | http://www.linuxjournal.com

In a tabletop exercise, all the relevant parties sit down together and, in
real time, walk through a hypothetical scenario noting everything that
would be done in response to a problem. Tabletop exercises are the least
informative type of security exercise because they lack realism, but they’re
also the most lightweight exercise to run.

 An exercise scenario, written up in as much detail as possible and well
understood by the person running the exercise.

 A way for everyone on the team to meet in real time: conference room,
conference call, IRC, video conference—whatever works best for your team.

 All of the principals relevant to the organization’s potential response to
this scenario.

 Anyone else who would benefit from participation in the exercise.

 Excellent note-taking.

That’s it. So, you now have no excuse not to at least run tabletop
security exercises within your group.

Live exercises are a bit more involved, but they provide a wealth of
information and experience to your team that can’t be gotten in any other
way apart from having something actually go wrong. There are, of course,
degrees of “live-ness”. It’s acceptable—and often easiest on your team—if
you start at the less-ambitious end, where you present a hypothetical then
step through the resolution live, then progress to more involved exercises
where problems are introduced on actual systems.

A live exercise will involve at least a Blue Team and a Red or White Team
(possibly both). The Blue Team is the defenders. That team will be doing
its job throughout the exercise much as it would during a real incident.
The Red Team is the attacker. That team causes whatever problem sets off
the exercise, and in advanced adversarial exercises, may continue to act
throughout the duration of the exercise. The White Team is the referee. It
may provide clarification throughout the exercise, observe and so on, but

LJ267-July2016.indd 48 6/23/16 3:17 PM

UNDER THE SINK

49 | July 2016 | http://www.linuxjournal.com

should not be actively participating (usually).
The most important part of preparation for a live exercise is setting and

communicating the boundaries of the exercise. Consider the following:

 Who should be informed that the exercise is going on? Until your
organization’s information security is fairly mature, this should be
everyone within the organization. Once live exercises are part of your
regular routine, it can become fun to schedule some exercises in secret,
telling only key members of the Red and White teams when it will
happen, in order to get more realistic responses. Surprise exercises
tend to end badly in organizations that aren’t very practiced at running
exercises, however, because if not planned carefully, they can backfire.
Also, consider whether to inform anyone outside the organization.
For example, you might want to warn your data center’s staff (if you
colocate) before running an exercise to prevent them from initiating a
security incident upon observing suspicious traffic to/from your systems.

 How much degradation of live services is acceptable due to an exercise,
and how will you ensure that this limit is not exceeded? Live exercises can
be unpredictable. This is good, because real incidents are unpredictable.
However, it is important to scope exercises so that they don’t exceed the
organization’s tolerance for interruptions to normal service. Once you
have a great deal of practice running exercises, you’ll be able to play it
closer to the wire, but while your organization is new at this, consider
limiting security exercises to operating on non-production systems, and/
or systems that are easily re-imaged after the exercise.

 How will you clean up the mess after the exercise and ensure that it
was cleaned up thoroughly?

 How will you handle conflicts between the security exercise and
other duties? Ideally, the answer here is “the same way we would
handle conflicts between a real incident of this magnitude and
other duties”. However, institutionalizing that will take work in
most organizations. Beginning with lower-grade simulated incidents
(for which diverting effort from other projects might not be

LJ267-July2016.indd 49 6/23/16 3:17 PM

UNDER THE SINK

50 | July 2016 | http://www.linuxjournal.com

acceptable in real life) and working your way up may help. After a
few successful responses, plan to simulate a more critical incident
(preferably while nobody is in the middle of putting out any real-

to the exercise, it’s important to point this out as a metric of how a
real exercise will be treated. It’s been my observation that managers
who refuse to reallocate effort during an exercise almost always

token effort) during a real incident.

Red Team
When forming the Red Team, do your best to pull members of your
staff who have not been on the Red Team in the past, or at least not
recently. Using non-security-team personnel on the Red Team and
rotating those personnel regularly can provide an incredible morale
boost to your organization because:

 It’s fun and different from being the defender.

 It’s a good learning experience.

 It keeps people from feeling like being on the Blue Team is a test.

 It builds investment in the success of security exercises.

Not everyone on the Red Team needs to be technical. Plenty of exercises
can have a social-engineering aspect to them, and those are carried out
just as well by non-technical staff from time to time.

Give the red team plenty of preparation time, but urge them to keep
the nature of the planned exercise a secret. Most white-hats who don’t
do security full time (and many who do!) don’t have much experience
carrying out mischief, so they’ll need time to familiarize themselves with

the longer your organization does security exercises, because once you
are practiced, there likely will be one experienced Red Team member
participating in each exercise to help the less-experienced ones.

LJ267-July2016.indd 50 6/23/16 3:17 PM

UNDER THE SINK

51 | July 2016 | http://www.linuxjournal.com

White Team
Not all exercises need a White Team. However, if any part of the
exercise is hypothetical rather than happening live, a White Team is

The White Team may have to improvise, if it’s asked something the
exercise designer did not expect!

White Team members often play bit parts in the exercise as well,
representing entities outside the project, such as frustrated users or
curious reporters.

Blue Team
The Blue Team is everyone not explicitly placed on the White or Red Team
and not explicitly excluded from the exercise. The Blue Team is generally
responsible for reacting to the simulated security incident as it would to
a real one. The main differences will be that, unless you have a partner
organization that participates in your security exercises, any outside
communication that would happen in a real incident is directed instead at
the White Team during exercises.

Follow Through
It is of paramount importance that members of every team record their
actions and ideas throughout the exercise. The most important part of any
exercise is what is learned from it, and if the knowledge isn’t captured,
the team as a whole won’t learn.

Debriefing
Debriefing an exercise ideally is done within a few hours of the exercise’s
conclusion. However, with longer, more complex exercises, this may
not be possible. I cannot stress enough the importance of good record-
keeping to ensure that nothing significant is forgotten before the debrief.

Typically, the incident response leader (Blue Team lead) is responsible
for writing a report on the exercise. However, it’s been my preference to
ask that person to withhold the report until after everyone involved in
the exercise has had a meeting to debrief the exercise so as not to taint
anyone else’s recollections.

The debriefing meeting should walk through the exercise from start to

LJ267-July2016.indd 51 6/23/16 3:17 PM

UNDER THE SINK

52 | July 2016 | http://www.linuxjournal.com

finish, giving everyone who participated the chance to voice thoughts,
opinions and observations. Anyone interested should have the opportunity

incident response team lead can integrate anything new and interesting
into the final report.

The Report
Report-writing may sound boring, but it’s an essential part of the

exercise. Losing what you’ve learned would negate that investment.
It is important to get the details down so you can refer back to them
later when you want to compare a similar incident (real or simulated) or

important to have enough information to back up the conclusions and
recommendations at the end of your report.

Reports don’t have to be fancy or formal if that’s not your
organization’s usual mode of communication. What they should have is a
narrative describing the exercise—who was there, what happened, what
the timeline was—a summary of what was learned and any suggestions
as to how security could be improved through technical controls, policy,
training, resource allocation or other methods.

Don’t Put It in a Drawer
Finishing the report is not the end of the exercise: your organization
either needs to implement the recommendations made in the exercise
report, or the person who accepts risk on behalf of your organization
needs to document which recommendations will not be implemented
and why.

Lather, Rinse, Repeat
These exercises are not an effort to train until you succeed but to train
until you can’t fail. Although no security program is perfect, if you’ve
trained to the point of near perfection against advanced persistent threat
drills, runaway script kiddies become child’s play.

In the event of a true failure, the exercise should be rerun with a slight
variation within six months. This verifies that new training and controls

LJ267-July2016.indd 52 6/23/16 3:17 PM

UNDER THE SINK

53 | July 2016 | http://www.linuxjournal.com

have remedied the problem, provides needed practice and gives the team
an opportunity to overcome the loss, increasing morale.

Tips and Tricks
Here are some pseudo-random thoughts about planning, running and
using the information from security exercises:

 Keep track of what is learned in exercises, and keep copies of exercise
reports. Ideally, these are great fodder for demonstrating the success of
your efforts in improving information security for your project. In the
worst case, when recommendations go unheeded, referring decision-
makers back to this after a real incident often can bring them around
to taking security issues more seriously in the future.

 Have fun! Be willing to see exercises as a game. Encourage creativity
and limits-testing. Drop funny Easter eggs into the exercise. This is how
you’ll get the best bang for your buck in terms of learning and morale.

 Be willing to adapt. The planned exercise doesn’t have to be the exercise
if something goes wrong. Pivot, and keep everyone on their toes.

 Consider how you’d like your team to respond during real incidents,
and be sure that this is the behavior you encourage during exercises.

 Treat every exercise like a success, even when the results are
embarrassing. If your incident response usually goes perfectly smoothly,
your exercises aren’t hard enough. Expect some things to need tweaking
after most exercises. It is very important that your team members not see
security exercises as an opportunity for them to be graded. If someone

 Start small, and build the difficulty and complexity of exercises over
time. Just like weightlifters can’t lift 400 pounds on the first day or
progress if they don’t add weight over time, a team won’t get better
if it’s not challenged. If you are in fact learning, what was challenging
last month won’t be challenging next year.

LJ267-July2016.indd 53 6/23/16 3:17 PM

UNDER THE SINK

54 | July 2016 | http://www.linuxjournal.com

 Notes and debrief discussion from Red, White and Blue Team members
will identify additional scenario opportunities. Keep track of these
ideas as they come up so you have them at the ready when you need
to come up with a scenario.

 If you experience resistance to security exercises from The Powers That
Be, figure out what influential people you can invite to the Red Team for
an exercise. Don’t make them token members; make sure they are active
and having fun. This tends to turn people around on the practice.

 Don’t try too hard for absolute realism in all exercises. Realism is where
you begin, but if you are willing to venture into the unreal occasionally,
you will learn more. The best Red/Blue exercise I ever participated in was
part of an ICS-CERT training out at their facility in Idaho. They built out a
surprisingly realistic playground for us to attack and defend, then set us
loose with a ridiculous constraint: under no circumstances can you take
this infrastructure down to fix its obviously life-threatening problems. No
sane person issues that edict in real life. However, not being able to take
down the network that the White Team so helpfully built with security
akin to Swiss cheese after a mouse convention and shore it up before
attackers struck made the Blue Team—of which I was a part—try things
we’d never do in real life. I found myself breaking into my own systems
to reclaim them from the Red Team, using ARP-spoofing tricks I’d thought
died out in the 1990s to reclaim IP addresses on my internal network, and
all sorts of other shenanigans. It made me think fast about how the Red
Team was operating, and it led me to teach the other Blue Team members
details of OSI layer 2 manipulation that many had not been exposed to.

 If the White Team is experienced in exercise design and experienced in
running live exercises, do not be afraid to break my non-interference
rule. In the aforementioned ICS-CERT training, the White Team kept
us on our toes in part by messing with whomever was in the lead and
helping whichever team was struggling, in subtle ways. If done badly,
White Team interference can ruin an exercise. If done well, it can ensure
that everyone is pushed to the limits, even when the Red and Blue Teams
have a significant disparity in skill, resources or team cohesion.

LJ267-July2016.indd 54 6/23/16 3:17 PM

UNDER THE SINK

55 | July 2016 | http://www.linuxjournal.com

1) It’s Gone
Pick a system, any system. Think of a reason why it’s completely hosed—failure of
the entire RAID array, fire in the data center, evil script kiddies, sysadmin mistake—

 If you don’t have another of these systems to fail over to, where are your users
going while the system is down? What stopped working and for how long?

 If you have a failover system, how long did it take to fail over? What did your
users experience in the meantime?

available personnel know what to do and have the authority to do it?

 What data was lost? Are backups being made often enough?

 Were any other systems impacted by this system’s death? For example, if your
LDAP server died suddenly, did administrators still have access to other systems?
Did anything fail open?

2) Naughty Ned
Choose a team member with elevated privileges (any member of your security
or systems administration/ops team is usually a good choice, so might be a
leadership team member or a developer). Pretend he or she has been fired, and
revoke all of his or her privileges. Now he or she gets to cause whatever chaos
he or she can with any privileges that remain. This is a great way to test your
off-boarding checklist.

3) Wolf in Sheep’s Clothing
Most of the Red Team plays the part of ordinary users here. One plays a malicious
user. Can the Blue Team terminate the malicious user’s activity without negatively
impacting any of the nice users?

4) Committer Should Be Committed
This is a great one for software development teams. A developer, working while
sleep-deprived (thank you Red Team), has committed something to the master
branch of the repo that he or she shouldn’t have. It might have been login
credentials for an internal system or naked pictures of the boss’ dog—the content
doesn’t matter. The important thing is that it has to go.

Example Security Exercises

LJ267-July2016.indd 55 6/23/16 3:17 PM

UNDER THE SINK

56 | July 2016 | http://www.linuxjournal.com

See how your team removes the offending data both from the working
tree and the repository history, without breaking everyone’s workflow
beyond recognition.

5) Operation!
If you run a DevOps environment, this one’s for you. It’s far too easy for
deployment workflows to end up with very low bus factors (the number of
people who must be hit by a bus before the project is doomed or at least
in serious trouble). Watch a deployment or two and figure out who the
1–3 most critical people are in that path, then declare them unreachable
for the purpose of the exercise.

Now, suppose that a critical security vulnerability has been found in your deployed
product. Challenge your team to make a trivial code change (for example, add
a comment saying “We did it!” to the code at a specified point), then run your
entire test suite and deploy the code with those critical people gone.

6) Finger in the Dam
Find a (hopefully fairly harmless) proof-of-concept for the most recent security
vulnerability for which you applied patches. Run it against everything and find
out whether the hole really was plugged.

7) Negative Nancy
Have a Red Team member contact your primary customer support avenue,
playing the part of a user who is absolutely certain that his or her private
information entrusted to your service has been compromised. Bonus points if
the character is a “difficult” personality. See how the team handles it.

8) Fell Off a Truck
Your primary authentication database has fallen off a truck (your choice
whether this is your database of external user accounts or something for
internal personnel only). Demonstrate how you would notify those affected
and force password resets. Bonus points if you can detect and flag attempts
to use compromised credentials.

9) Ewe Did It
Start an (otherwise innocuous) process on one of your systems that occupies
as much RAM as it can get its hands on. See how long it takes for anyone to
notice, and how they respond.

LJ267-July2016.indd 56 6/23/16 3:17 PM

UNDER THE SINK

57 | July 2016 | http://www.linuxjournal.com

10) Stowaway
Connect an unauthorized network device into your network and let it talk to
something. See how your team tracks it down and removes it.

11) Exfiltration
One of your employees has decided he or she would like your big, valuable,
internal database. The Red Team tries to exfiltrate the target (any way it likes)
without being detected.

12) Nosy Nelly
One of your systems starts nmapping the network. Does anyone notice?

13) Blame the Mailman
A system that never should send mail starts sending (or trying to send) spam.
What happens next?

14) Delivery
In a disguise, try to make your way into some limited-access area of the
building, such as your data center. It helps to appear pregnant, talk on the
phone, tailgate someone, carry something heavy or insist you are making a
delivery or have an appointment. See if anyone stops you.

15) Pick-Up Stix
Drop some USB sticks around the building—in the parking lot, the restroom,
a conference room, a lobby. Place an autorun executable on the sticks that
notifies you when they are inserted in a machine that autoruns USB devices,
and place an interesting-looking fi le on there that also tries to call home
when opened.

16) Phishing Expedition
Send a convincing phishing e-mail (with at least one flaw that a reasonable
person would pick up on) to your staff, directing them to a fake login page and
see who gives up their credentials. Note: this one is likely to rankle some people
who feel duped when you come out and tell them what happened, but it’s really
good at driving home the importance of phishing awareness if you can afford
the political fallout.

LJ267-July2016.indd 57 6/23/16 3:17 PM

UNDER THE SINK

58 | July 2016 | http://www.linuxjournal.com

17) Compromising Positions
Suppose that a rootkit has been discovered on a critical piece of infrastructure
on your internal network (for example, your satell ite server or your LDAP
server). Challenge your team to prove that none of your other systems have
been compromised (not assume, prove).

18) Failure Is Always an Option

and document these, then break one. Does the scope of the outage match
expectation? Does the recovery time/process match expectations?

19) Free for All
This is a big, high-investment exercise to run, but it’s also the best. Set up a
dedicated environment for your exercise to run in that is not connected to your
other internal networks or to the public internet. Provide a set of services that
needs to be kept running and consider adding some data meant to be kept
confidential. Don’t set up that environment in the most secure way possible.

Set targets for the Red and Blue Teams with various point values—for example,
10 points to each team for each system it controls at the end of the exercise,
20 points for the Blue Team for every half hour that a particular service
continues without interruption, 50 points for the Red Team if it f inds and
decrypts such-and-such a fi le. Then set both teams loose with nothing but a
time limit and see what happens.

Send comments or feedback via
http://www.linuxjournal.com/contact
or to ljeditor@linuxjournal.com.

RETURN TO CONTENTS

LJ267-July2016.indd 58 6/23/16 3:17 PM

