
Rebuilding a Plane In Flight
Refactors Under Pressure

Susan Sons
IU-CACR, OSG

sesons@iu.edu

1

Disasters Happen.
An ounce of prevention is worth a
pound of cure...

...but sometimes a pound, or a ton, of
cure is needed.

We cannot go back in time. Facts are,
we live in an imperfect world and some
people will need to clean up messes:
messes of their own making, and of
others'.

Image:

http://www.nationalmuseum.af.mil/Visit/Museum-Exhibits/Fact-Sheets/Display/Article/196943/roma-tragedy/ 2

http://www.nationalmuseum.af.mil/Visit/Museum-Exhibits/Fact-Sheets/Display/Article/196943/roma-tragedy/

Working a critical disaster, joys and
challenges

The work is important.

The bar for success is known.

Success requires managing as many social problems

as technical ones.

The ground will change beneath you.

There's pleasure in taking on the things that others

are afraid to.

3

Why get good at this?

4

What does it take to be good at this?
Step Zero: Decide that you will be responsible.

Understand the problem: this requires technical acumen, social skills, and domain

knowledge. If you aren't yourself an experienced architect in this domain, you must

have a very close partnership with one.

Set a clear, concrete, finite scope.

Spend time with people -- split technical and social leadership positions if needed to

make this investment possible.

Expect drama. Forgive drama.

Keep perspective: the purpose of a rescue is long-term sustainability. Any other
goal may be sacrificed to support this one.

5

Systems and Software
One Method

6

How to Train for the Unknown

7

Breaking it down: Priorities
Three themes must be considered at each step in planning and carrying out the refactor:

The Timeline Balancing Act:
Playing the long game while dealing with immediately
pressing concerns, keeping perspective

Project Management Concerns:
Resourcing, communication, stakeholder priorities

Technical and Architectural Strategy:
Supporting toolchains, architecture principles, testing,
code cleanliness, maintainability, security

8

Your refactor's most precious and finite
resource is TIME.

9

Go for the snowball effect.

Cluster disruptions in order to minimize them.

Avoid Mythical Man-Month errors.

Stay out of rabbit holes.

Put long-term gains ahead of immediately pleasing people.

10

Q & A

11

Project Management:

You will not know the depth, breadth, or nature of the social and
technical problems until you are halfway down into the abyss.

There is always another problem lurking.

That's okay.

12

Code Longevity:

Resources
Personnel (devpower & expertise)
Repository & Access
Build System
Tests
Documentation
Communication Channels

13

Pony Factor
How many currently active

committers account for >50%
of the code base?

Breakdown by Dave Nalley:
https://ke4qqq.wordpress.com/2015/02/08/pony-factor-math/

Based on research by of Daniel Gruno Snoot.io

14

https://ke4qqq.wordpress.com/2015/02/08/pony-factor-math/
http://twitter.com/humbedooh
http://snoot.io/

Start With Recon and Comms

When Sputnik crashes down on your head, resist the urge to react immediately, unless it's
to prevent immediate loss of life. Gather information, start identifying the problem and

scoping a response, and talk to people.

Write. Write down your background planning, your thinking, your project scope. Then,
communicate with stakeholders face-to-face (or by teleconference) and follow up in writing.

Be kinder to everyone than you need to be, be empathetic even when people are being
wrong. Not because you're a sap, because it's how you get people to do communicate

freely. Every disaster got that way somehow, and everyone near it fears blame. Leading a
major refactor/rescue means keeping your focus more on outcomes than blame.

15

DO NOT try to plan a smooth-running
project.

You must plan for drama and messiness so that you are
able to absorb it.

Give yourself--and your team--healthy margins for error.
 This is how you beat code that is full of unknown

landmines.
16

Stakeholders don't care how
hard your job is.

It's your job to find the stakeholders; they won't come find you.

What are they trying to do with the software or system? What constraints
do they operate under?

It's also your job to sort out the XY problems.

Manage expectations, and minimize negative impact on stakeholders.

17

It's under control. I have a
process for this.

Even though I'm mostly (completely)
winging it.

18

A complex
refactor requires

a team.
19

An effective refactor team is
a group of humans who:

Have complementary skill sets, and a diversity of outlooks.

In aggregate, have all of the skills needed to complete the refactor.

Have or can quickly build a working rapport that allows for comfortable,
informal conversation.

Have bought in to the refactor process.

Have enough resources to do the work that's needed.

Can check some ego at the door.

20

Q & A

21

So...this technology thing...

22

Triage

23

Triage is not about
understanding the situation
in total.

Triage is discovering the
greatest points of crisis and
how they relate to one
another, so that the patient
can be stabilized to the
point that we can worry
about their general health.

24

BUGS
Let's talk about

25

Fixing bugs is temporary. More bugs are coming.

Long-term impact comes from making bugs easier
to fix, and eliminating or preventing classes of
bugs.

A good refactor results in a long tail of bug fixing.

26

High-Return Technical Improvements:
Code Access
Build Process
Testing Infrastructure and Automation
Documentation
Refactors that accomplish:

Major code reduction
Major improvements in internal compartmentation
Major tightening of internal APIs
Migration away from dangerous dependencies

​Bugs that are immediate security crises.
27

Information Security Practice Principles (ISPP)

Comprehensivity: Am I covering all of my bases?

Opportunity: Am I taking advantage of my environment?

Rigor: What is correct behavior, and how am I ensuring it?

Minimization: Can this be a smaller target?

Compartmentation: Is this made of distinct part with

limited interactions?

Fault Tolerance: What happens if this fails?

Proportionality: Is this worth it?

Finding Your Way In the
Dark: Information Security

From First Principles
5pm Wed

28

What makes devs' work
harder?

29

High-Return Technical Improvements:
Code Access
Build Process
Testing Infrastructure and Automation
Documentation
Refactors that accomplish:

Major code reduction
Major improvements in internal compartmentation
Major tightening of internal APIs
Migration away from dangerous dependencies

​Bugs that are immediate security crises.
30

What about interim maintenance?

Cyber-physical systems (ICS/SCADA/etc): emergency-fixing only...any other
changes are at cross-purpose to the refactor.

With software, and with systems made up of general-purpose hardware
components...you have a choice to make:

Emergency fixes only, focus all resources on the refactor.
​--OR--

Develop in parallel: trade-off of lower end-user friction for MUCH higher
resource and coordination needs during the rescue.

31

Build-and-Replace
vs.

Multi-Stage Refactor

32

Breaking it down: Priorities
Three themes must be considered at each step in planning and carrying out the refactor:

The Timeline Balancing Act:
Playing the long game while dealing with immediately
pressing concerns, keeping perspective

Project Management Concerns:
Resourcing, communication, stakeholder priorities

Technical and Architectural Strategy:
Supporting toolchains, architecture principles, testing,
code cleanliness, maintainability, security

33

Go for the snowball effect.

Cluster disruptions in order to minimize them.

Avoid Mythical Man-Month errors.

Stay out of rabbit holes.

Put long-term gains ahead of immediately pleasing people.

34

About 10% of your team's
time.

The Cost of Continuous Time
Estimation:

35

Continuous Time Estimation with
approval (assuming slowest response

is 2-4 working hours):

15-20% of your team's time.

36

Q & A

37

Scenarios

38

Q & A

39

Many Thanks!

To CTSC, the NSF Cybersecurity Center of
Excellence, especially our director Von
Welch, for the freedom to work on this,
and to come teach it here.

To OSG, for sending me to the Summit.

To countless people who gave feedback
along the way.

40

The slides and other info about this talk will be available via
 by tomorrow morning.

Come to "Finding Your Way In the Dark: Security From First Principles"
tomorrow at 5pm to learn about how to secure your refactor, and
more.

http://security.engineering/talks

Reach me at sesons@iu.edu

Don't stop now!

41

http://security.engineering/talks
https://cacr.iu.edu/donate

Using and Sharing This Work:

 Rebuilding a Plane in Flight: Refactors Under Pressure by Susan Sons is
licensed under a

.

Permissions beyond the scope of this license may be available; send inquiries to
.

Creative Commons Attribution-ShareAlike 4.0 International
License

sesons@iu.edu

42

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
mailto:sesons@iu.edu

